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Summary

What is already known on this topic?

Existing methods of generating small area estimates often require ad-
vanced statistical knowledge, programming and coding skills, and extens-
ive computing power.

What is added by this report?

We created an ArcGIS Tool — the Rate Stabilizing Tool (RST) — that pro-
duces age-adjusted rate estimates from record-level data and indicates
which rates should be considered statistically reliable. This tool is particu-
larly important for generating estimates when the population size or the
number of events is small. With the RST, estimates can be generated for a
wide range of geographic units, including subcounty levels.

What are the implications for public health practice?

With its ease of use, the RST addresses the need to produce stable local
estimates of chronic disease measures to improve chronic disease surveil-
lance, prevention, and treatment.

Abstract
Accurate and precise estimates of local-level epidemiologic meas-
ures are critical to informing policy and program decisions, but
they often require advanced statistical knowledge, programming/
coding skills, and extensive computing power. In response, we de-
veloped the Rate Stabilizing Tool (RST), an ArcGIS-based tool
that enables users to input their own record-level data to generate
more reliable age-standardized measures of chronic disease (eg,
prevalence rates, mortality rates) or other population health out-
comes at the county or census tract levels. The RST uses 2 forms
of empirical Bayesian modeling (nonspatial and spatial) to estim-

ate age-standardized rates and 95% credible intervals for user-spe-
cified geographic units. The RST also provides indicators of the
reliability of point estimates. In addition to reviewing the RST’s
statistical techniques, we present results from a simulation study
that illustrates the key benefit of smoothing. We demonstrate the
dramatic reduction in root mean-squared error (rMSE), indicating
a  better  compromise  between  accuracy  and  stability  for  both
smoothing approaches relative to the unsmoothed estimates. Fi-
nally, we provide an example of the RST’s use. This example uses
heart disease mortality data for North Carolina census tracts to
map the RST output, including reliability of estimates, and demon-
strates a subsequent statistical test.

Introduction
Public health professionals are increasingly using spatial analysis
and geographic information systems (GIS) to document and ad-
dress geographic disparities in the burden of chronic disease (1–8).
Maps of local-level disparities in chronic disease morbidity, mor-
tality, risk factors, and treatments are critical to informing policy
and program decisions and enhancing partnerships to address the
disparities (9–12). One important component in the use of GIS for
chronic disease prevention and health promotion is the availabil-
ity of data at the local level (eg, county, census tract) that yield
stable estimates that are both accurate and precise. Here, our fo-
cus is the ability to produce stable event rates (eg, death rates),
which depend primarily on the number of events that occur in a
place of interest for a designated period. These event counts in
turn depend on the prevalence or incidence of the event and the
population size. In general, the smaller the population size, the
smaller the event counts and the greater the instability in popula-
tion measures of chronic disease. In particular, small counts are of-
ten  encountered  when  analyzing  small  geographic  areas  (eg,
census tracts) or examining population subgroups (eg, race/ethni-
city, sex) or sparsely populated regions (eg, rural areas). In this
article, we use the term “small area” to refer to areas for which the
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data alone do not provide stable estimates for a given population
measure, regardless of the physical size of the geographic area it-
self.

Recent advances in computing and in the field of small-area estim-
ation — specifically Bayesian methods (13–17) — have provided
avenues for generating more reliable local-level population meas-
ures of chronic disease when the number of events are small. In
particular,  these approaches often involve smoothing observed
rates toward a common mean (eg, the national average) or toward
neighboring values.  However,  these methods typically require
knowledge of advanced statistics, programming/coding skills, and
extensive computing power — resources that may be challenging
to obtain for many public health professionals in need of stable
small-area estimates.

In response to the need for local-level measures of chronic disease
and recognizing the challenges that often exist in generating reli-
able estimates, we developed the Rate Stabilizing Tool (RST). The
RST is an ArcGIS-based tool that enables users to input their own
record-level data to generate more reliable age-standardized meas-
ures of chronic disease (eg, prevalence, rates) or other population
health outcomes at the local level. Bayesian modeling techniques
are built into the tool, enabling users to better evaluate measures of
statistical uncertainty for each population subgroup and locale.

In this article, we describe the statistical techniques that are built
into the Rate Stabilizing Tool, review the results from a simula-
tion study, provide an overview for how to use the RST, and dis-
cuss its strengths and limitations. Files needed to install the RST
and detailed instructions are available at https://www.cdc.gov/dhd-
sp/maps/gisx/rst.html. Statistical and technical details of the Rate
Stabilizing  Tool  are  available  in  a  Web  Appendix  (https://
sites.google.com/site/harryq/rst).

Statistical Techniques of the Rate
Stabilizing Tool
Bayesian modeling

The Rate Stabilizing Tool employs Bayesian modeling techniques
to generate local-level estimates of the prevalence of chronic dis-
ease (or other outcomes). These estimates are more stable than
those generated by conventional  methods.  Bayesian modeling
techniques are used because 1) they are well-equipped to maxim-
ize the information gained from available data in situations where
data are sparse, thereby yielding estimates with greater precision
than crude estimates, and 2) they generate accompanying meas-
ures of uncertainty, the benefits of which will be discussed shortly.
Bayesian methods generate estimates by combining information
from the observed data (via the likelihood [ie, the distribution of

the observed data given various model parameters]) and so-called
prior information (often expressed in the form of model structure
[eg, spatial correlation]). The result of this combination is referred
to as the posterior distribution. From the posterior distribution, we
can then generate summaries such as the mean and 95% credible
interval (the Bayesian equivalent of classical confidence intervals)
for each of the region-specific rate estimates and make statistical
comparisons  with  other  values.  An  extended  introduction  to
Bayesian methods is available in the Web Appendix; a more thor-
ough introduction to Bayesian methods can be found in the text by
Carlin and Louis (18).

Two forms of Bayesian modeling are incorporated into the RST
— a nonspatial approach and a spatial approach. In the nonspatial
approach, local-level rates are smoothed toward the observed rate
from the overarching spatial domain (eg, the rate for a selected
state). In contrast, the spatial approach smooths each local-level
rate toward the crude rate of the combined neighboring geograph-
ic units  (and is  similar to the approach of Clayton and Kaldor
[17]). Complete details on these approaches, including justifica-
tions for the selected likelihood and prior distributions and deriva-
tions of the posterior distributions, are available in the Web Ap-
pendix.

Age-standardization of local-level rates

Age-standardization of local-level chronic disease rates is import-
ant because differences in age-distributions across regions can
contribute to stark differences in measures of the burden of chron-
ic disease, even if the underlying rates in each age-group are com-
parable. Generally speaking, age-standardized rates for a given re-
gion are obtained by computing the weighted average of the re-
gion’s age-specific rates, where the weights used are based on the
age distribution of a standard population (eg, the 2010 US stand-
ard [19,20]). Directly using these age-specific rates poses chal-
lenges, however, because crude estimates of these rates are often
based on small counts. Not only can these small counts lead to
age-specific rate estimates that are unstable, but the instability in
the age-specific rates can seep into the age-standardized estimates.
As such, a key feature of the RST is that we first obtain smoothed
estimates of the age-specific rates by using one of the aforemen-
tioned Bayesian methods, and then these smoothed age-specific
rates are used to compute the age-standardized rates for each re-
gion. This process allows the uncertainty in the smoothed age-spe-
cific rates to propagate through to the age-standardized rates; in
contrast, estimates of the age-standardized rates based solely on
the data may require complex equations to approximate these vari-
ance estimates (21,22).
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Simulation Study
We conducted a simulation study to compare smoothed age-stand-
ardized rates (both spatial  and nonspatial  smoothing) with un-
smoothed age-standardized rates to demonstrate the RST’s effect-
iveness. The simulation study was based on heart disease death
data from US counties for 1979–1988 and multiple age groups
(35–44, 45–54, 55–64, 65–74, 75–84, and ≥85) obtained from
CDC WONDER (23). From these data, we calculated an estimate
of the age-group–specific mortality rate for each county; these are
henceforth considered the “true rates” and were used to generate
100 data sets of simulated death count. We then analyzed the sim-
ulated death data by using the spatial and nonspatial smoothing
methods of the RST and compared the estimates from the RST to
the unsmoothed age-standardized mortality rates. We compared
estimates from all 3 approaches by using root mean square error
(rMSE), a measure that combines the bias of an estimate and its
variance, and we estimated coverage probabilities (ie, the propor-
tion of the 95% credible interval that contains the true rates) for
both smoothing approaches. Complete details of the simulation
study are available in the Web Appendix.

Figure 1 compares the rMSE of the age-standardized rate estim-
ates from the spatial and nonspatial smoothing approaches with
the rMSE of the unsmoothed rates, where a lower rMSE indicates
better compromise between accuracy (ie, bias) and stability (ie,
variance). Here, we see the key benefit of smoothing, namely a
dramatic reduction in the rMSE for both smoothing approaches
when compared with the unsmoothed estimates. A comparison of
the age-standardized and age-group specific estimates from the 2
smoothing approaches shows only minor differences. A more thor-
ough comparison of these 2 approaches, including maps of the
rMSEs of the age-group specific and the age-standardized rates,
can be found in the Web Appendix. In addition to improvements
in rMSE, both smoothing approaches achieved coverage probabil-
ities approximately equal to 0.95 as desired (ie, the 95% credible
intervals contain the true values approximately 95% of the time).

Figure  1.  Comparison  of  the  root  mean  square  error  (rMSE)  of  the  age-
standardized rates from the 2 smoothing approaches (A, nonspatial vs crude
estimates and B, spatial vs crude estimates) of the Rate Stabilizing Tool to the
unsmoothed rates estimated directly  from the raw data in the simulation
study.

 

An Overview of How to Use the Rate
Stabilizing Tool (RST)
The RST operates as a set of tools within an ArcToolbox toolset;
no installation or administrative privileges are required to run this
tool. After inputting individual-level data into ArcGIS, users spe-
cify their desired age structure, and then the RST produces 3 sets
of age-standardized rates: unsmoothed; nonspatially smoothed;
and spatially smoothed. The RST also generates 95% credible in-
tervals and alerts on the reliability of each smoothed rate estimate.
An overview of the use of the tool is as follows:

1. Input individual-level data. The user loads a table where each
record represents a single event (eg, death) and contains the indi-
vidual’s age and a geographic identifier (eg, census tract, county).

2. Choose age structure. The user then selects age groups that will
be used for age-standardization. For age standardization, the RST
connects to the US Census Data web API (https://census.gov/data/
developers/data-sets/acs-5year.html) and downloads the age-spe-
cific population sizes for each census geography of interest, along
with the age distribution for the US standard population.

3. Import US Census areal unit boundary definitions (24) (eg, a
shapefile) for map creation and spatial smoothing. In addition to
facilitating the creation of maps, the tool will use the boundary
definitions to create a neighborhood dictionary for the geographic
units in the spatial domain. The neighborhood dictionary is re-
quired for RST’s spatial smoothing approach. This dictionary de-
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scribes which geographic units are adjacent to one another, thus
defining the neighbor pairs. Once constructed, the neighborhood
dictionary is saved and can be re-used for future analyses with the
same shapefile.

4. Examine and evaluate the output. The RST generates an output
text file, with one record for each geographic unit. Each record
contains the following information:

Age-standardized rate, unsmoothed•
Age-standardized rate, smoothed (nonspatial) and correspond-
ing 95% credible intervals

•

Age-standardized rate, smoothed (spatial) and corresponding
95% credible intervals

•

In addition to providing rate estimates and 95% CIs, the RST also
provides an alert when the estimate for a given geographic unit is
deemed unreliable (ie, when the width of the 95% credible inter-
val  is  larger than the estimate).  The RST generates 3 types of
alerts:

Unreliable nonspatial Bayesian estimate, when the nonspatial
Bayesian estimate is not reliable for a given geographic unit;

•

Unreliable spatial Bayesian estimate, when the spatial Bayesian
estimate is not reliable for a given geographic unit; and

•

Unreliable estimate, when neither of the Bayesian estimates are
reliable for a given geographic unit.

•

5. Mapping the results. After evaluating the output from the RST
and deciding which values are appropriate to display on a map,
users can create maps by joining the output from the RST to their
US Census areal unit boundary definition shapefile for the area of
interest. Users can easily make maps comparing the display of the
3 types of rates generated by the RST.

6. Using the tool: an example. To illustrate the use of the RST, we
analyzed data on heart disease deaths in Charlotte, North Carolina,
for 2006–2011. We used the RST to age standardize the mortality
rates to the 4 age groups (0–34, 35–44, 45–64, and ≥65 y) and
generated heart disease mortality rates at the census tract level. We
obtained shapefiles corresponding to these boundaries from 2010
US Census Topologically Integrated Geographic Encoding and
Referencing reference files. These boundaries were used in the
RST’s spatial Bayesian smoothing approach.

The map on the left side of Figure 2A displays unsmoothed age-
standardized heart disease mortality rates in Charlotte and the sur-
rounding area. Although this map highlights census tracts with
high and low observed mortality rates, it obscures the degree of
statistical uncertainty in these rates. For example, if a priority is to

target public health interventions to areas with elevated rates, how
would one differentiate between census tracts with truly high rates
and census tracts with high rates that are unreliable because of
small population sizes? To address this challenge, we mapped the
smoothed rates (nonspatially smoothed and spatially smoothed)
and found census tracts with unreliable mortality rates (2 maps on
right side of Figure 2A). These 2 maps indicate that the rates for
many of the census tracts are unreliable (33.4% with nonspatial
smoothing and 34.1% with spatial smoothing) and should be con-
sidered with caution.

Figure 2. Illustration of the functionality of the Rate Stabilizing Tool using heart
disease mortality data from the region surrounding Charlotte, North Carolina.
A,  Age-standardized  heart  disease  death  rates  by  census  tract  using  3
methods,  with  hatch  marks  indicating  unreliable  rates  based  on  the  2
Bayesian smoothing approaches. B, census tracts with death rates that are
significantly  higher  or  lower  than  the  state  rate  using  the  2  smoothing
methods.

 

An additional way to use the information on statistical uncertainty
generated by the RST is to compare the rate for each census tract
to a regional standard. The maps in  Figure 2B display census
tracts that have age-standardized heart disease death rates that are
significantly higher or significantly lower than the regional aver-
age rate based on the 95% credible intervals generated by the RST
for spatially and nonspatially smoothed rates. Census tracts where
the 95% credible intervals do not include the mean rate for the re-
gion were classified as having rates that were significantly higher
or significantly lower than the rate for  the region.  For several
census tracts — such as those in the southern part of the Charlotte,
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North Carolina region (right side of Figure 2A) — the rates were
determined to be unreliable because of the wide 95% credible in-
tervals, but we can conclude that those rates are significantly be-
low the regional average because the entire range of the 95% cred-
ible intervals is below the regional rate.

Strengths and Limitations
An important strength of the RST is that it combines 2 tasks —
rate smoothing and age-standardization — into a single tool. By
doing so, the RST avoids the potential pitfall of estimating age-
standardized rates from extreme age-specific rates (eg, rates based
on zero deaths). The RST overcomes this pitfall by first smooth-
ing the age-specific rates, producing age-specific rates that are
more reliable than those calculated directly from the data. By cal-
culating the age-standardized rates on the basis of these smoothed
rates, we can improve the stability of our estimates (Figure 1).

In addition to the ease-of-use attributable to combining these 2
tasks, the RST offers inferential improvements. We demonstrated
through our simulation study that both approaches for computing
smoothed age-standardized rates dramatically improve the quality
of the estimates compared with the estimates generated solely
from the observed data based on the rMSE. In addition, the RST
provides 95% credible intervals for smoothed age-standardized
rates: this is a notable strength given the complexity of producing
uncertainty estimates when calculating age-standardized rates ac-
cording to standard methods (21,22). Furthermore, the 95% cred-
ible intervals produced by the RST yield coverage probabilities
(ie, the probability that the 95% credible interval contains the true
value) near the desired 0.95 for both the age-specific and the age-
standardized rate estimates. This indicates that convenience of the
RST does not compromise statistical validity.

This version of the RST has several limitations. First, although
many public-use data sets consist of aggregate, tabular data that
comprise the number of events and the population sizes stratified
by geographic unit and age group, the RST is designed only to
analyze  record-level  data.  To  mitigate  this  limitation,  we  de-
veloped instructions to generate synthetic individual-level data
from a table of aggregate data. Future iterations of the tool will al-
low users to import record-level or tabular data directly. In addi-
tion to added flexibility, future updates to the tool will facilitate
the analysis of public-use data sets from sources such as CDC
WONDER, which are subject to various privacy protections that
result in data suppression (eg, CDC WONDER suppresses counts
of ≤9 to protect data privacy [25]); ignoring (or inappropriately ac-
counting for) these protective measures may result in biased rate
estimates (26). After this functionality is added, the RST will be
able to seamlessly account for such privacy protections to pro-

duce rate estimates for small areas that are both reliable and valid;
Quick et al (27) explained how this can be done. The RST is also
not currently equipped to analyze survey data, where accommod-
ating sample sizes and survey weights adds layers of complexity
that must be carefully considered.

A final limitation of the RST is that it relies on empirical Bayesian
methods rather than fully Bayesian methods. The approaches used
by the RST smooth toward estimates determined by the data and
the degree of  smoothing is  predetermined.  In contrast,  a  fully
Bayesian approach would include prior distributions on the values
each region is  smoothed toward and the degree of  smoothing,
thereby  learning  from  the  data  what  each  region  should  be
smoothed toward and how strong the smoothing should be. The
conditional autoregressive model of Besag et al (13) is a popular
approach for this type of analysis. Unfortunately, fully Bayesian
methods have one key drawback: computational burden. In partic-
ular, fully Bayesian models are typically fitted by using complex
Markov chain Monto Carlo algorithms that must be run until con-
vergence has been achieved. That is, the algorithm needs to iterat-
ively learn about each of the model parameters until their estim-
ates stabilize, a process which often requires thousands of itera-
tions and can take minutes or hours to complete depending on the
size of the data set. Because convergence is often diagnosed visu-
ally, designing the RST to diagnose convergence in an automated
and efficient  fashion is  much more challenging.  Despite these
computational  challenges,  however,  the inferential  benefits  of
fully Bayesian models necessitate their consideration in future iter-
ations of the RST.

Conclusion
The Rate Stabilizing Tool is an add-on tool for ArcGIS that pro-
duces accurate and precise estimates of event rates for geographic
areas with small population sizes or small counts. The RST im-
ports record-level event data and uses an empirical Bayesian mod-
el to estimate age-standardized rates and 95% credible intervals
for user-specified geographic units. In addition, users are alerted if
a point estimate is deemed unreliable for a given geographic unit.
With its ease of use, the RST addresses the need to produce stable
local estimates of chronic disease measures to improve chronic
disease surveillance, prevention, and treatment.
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