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Abstract

Introduction
Electronic health record (EHR) systems provide an opportunity to
use a novel data source for population health surveillance. Valida-
tion studies that compare prevalence estimates from EHRs and
surveys most often use difference testing, which can, because of
large sample sizes, lead to detection of significant differences that
are not meaningful. We explored a novel application of the two
one-sided t test (TOST) to assess the equivalence of prevalence es-
timates in 2 population-based surveys to inform margin selection
for validating EHR-based surveillance prevalence estimates de-
rived from large samples.

Methods
We compared prevalence estimates  of  health indicators  in  the
2013 Community Health Survey (CHS) and the 2013–2014 New
York  City  Health  and  Nutrition  Examination  Survey  (NYC
HANES) by using TOST, a 2-tailed t test, and other goodness-of-
fit measures.

Results
A ±5 percentage-point equivalence margin for a TOST performed
well for most health indicators. For health indicators with a preval-
ence estimate  of  less  than 10% (extreme obesity  [CHS,  3.5%;
NYC HANES, 5.1%] and serious psychological distress [CHS,
5.2%; NYC HANES, 4.8%]), a ±2.5 percentage-point margin was
more consistent with other goodness-of-fit measures than the lar-
ger percentage-point margins.

Conclusion
A TOST with a ±5 percentage-point margin was useful in estab-
lishing equivalence, but a ±2.5 percentage-point margin may be
appropriate for health indicators with a prevalence estimate of less
than 10%. Equivalence testing can guide future efforts to validate
EHR data.

Introduction
Electronic health records (EHRs) have generated enthusiasm for
real-time population health surveillance, but understanding their
comparability with other data sources, especially gold-standard
sources, is crucial (1). A few studies have compared data from
EHRs with data from surveys or registries by making hypothesis-
testing statistical comparisons (2–9). With the exception of our re-
cent EHR validation studies (7–9), these studies relied mostly on
difference testing, which can establish only whether the difference
between any 2 estimates is statistically significant. With differ-
ence testing, equivalence cannot be established, because a lack of
a  significant  difference  could  simply  result  from insufficient
power to detect a difference. Large sample sizes might also lead to
the detection of significant differences that are not meaningful,
which is a problem that other investigators have reported (2,5) and
is cited as a reason to avoid the statistical testing of EHR data (10).
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Because EHR data typically have large sample sizes, an alternate
method of comparison, the two one-sided t test (TOST) or equival-
ence test, may be particularly helpful in comparing EHR data with
data from other sources. Equivalence testing establishes that 2 es-
timates are statistically equivalent, which is conceptually distinct
from establishing that 2 estimates are statistically different. TOST
determines whether 2 estimates do not differ by more than a pre-
specified margin of equivalence, or equivalence margin (11). For
TOST, the null hypothesis is that 2 estimates differ by more than
the prespecified acceptable amount,  allowing establishment of
equivalence. For a t test, the null hypothesis is that 2 estimates are
not different; therefore, even if the null hypothesis is accepted, a t
test cannot establish equivalence.

The use of TOST is well established in the pharmaceutical in-
dustry for noninferiority trials, and both the US Food and Drug
Administration  and  the  European  Medicines  Agency  provide
guidelines for conducting equivalence testing and selecting equi-
valence margins (12,13). There is, however, no evidence-based
precedent for establishing equivalence margins for prevalence es-
timates. In this study, we explored a novel application of TOST to
compare prevalence estimates from 2 New York City population-
based surveys in an effort to establish the optimal equivalence
margin for validating prevalence estimates generated from EHR
data.

Methods
We used data from the 2013–2014 New York City Health and Nu-
trition Examination Survey (NYC HANES) and the 2013 Com-
munity  Health  Survey  (CHS).  NYC HANES is  a  population-
based, cross-sectional household survey of noninstitutionalized
New York  City  residents  aged  20  years  or  older.  The  survey,
modeled after the National Health and Nutrition Examination Sur-
vey, was conducted jointly by the City University of New York
(CUNY) School of Public Health and the New York City Depart-
ment of Health and Mental Hygiene (NYC DOHMH) (14). CHS is
an annual cross-sectional, random-digit–dial telephone-based sur-
vey of New York City residents aged 18 years or older, modeled
after the Behavioral Risk Factor Surveillance System (15). For
both data sources, our analytic study population was restricted to
adults aged 20 years or older who reported having seen a health
care professional for primary care in the previous 12 months (“in
care”) (16) and who had complete data for age, sex, and ZIP code.
The  in-care  populations  of  the  2013  CHS  (N  =  6,166)  and
2013–2014 NYC HANES (N = 1,135) were described previously
(16) and had similar distributions in demographic characteristics,

including age group, sex, race/ethnicity, education, and neighbor-
hood poverty level. The protocol for the 2013 CHS was approved
by the NYC DOHMH institutional review board, and the protocol
for 2013–2014 NYC HANES was approved by the institutional re-
view boards of  both NYC DOHMH and the CUNY School  of
Public Health.

Measures

We used data on the following 10 health indicators: smoking, in-
fluenza vaccination, depression, hypertension, diabetes, hyperlip-
idemia, serious psychological distress, and 3 categories of body
mass index (BMI).  Smoking was defined as having smoked at
least 100 cigarettes in one’s lifetime and having recently smoked
every day or some days at the time of the survey. Influenza vac-
cination was defined as reporting to have received an influenza
vaccine in the previous 12 months. Depression, hypertension, dia-
betes, and hyperlipidemia were defined as an affirmative response
to 4 questions asking respondents whether they had ever been told
by a health care professional they had these conditions. The ques-
tion on hyperlipidemia was restricted to men aged 40 years or
older and women aged 45 years or older to be consistent with
routine cholesterol testing recommendations of the US Preventive
Services  Task  Force  (17).  Serious  psychological  distress  was
defined as a Kessler 6 score of at least 13 (of a possible 24) (18).
BMI was classified into 3 categories: overweight or obesity (BMI
≥25), obesity (BMI ≥30), and extreme obesity (BMI ≥40). BMI
was calculated as weight in kilograms divided by height in meters
squared; height and weight were self-reported in CHS and meas-
ured during the interview in NYC HANES.

Statistical analysis

We first generated prevalence estimates and 95% confidence inter-
vals (CIs) using SAS-callable SUDAAN 11.0 (Research Triangle
Institute) to account for the complex survey design. These estim-
ates were weighted to the 2010 US census population (19), adjus-
ted by using the 2008–2013 estimates from the American Com-
munity Survey (20), and age-standardized to the US 2000 stand-
ard population (21). For each pair of prevalence estimates for the
10 health indicators, we computed the absolute percentage-point
difference in prevalence estimates and the prevalence ratio (using
NYC HANES as the denominator). We conducted a 2-tailed t test
and TOST in SAS 9.4 (SAS Institute Inc) using PROC TTEST;
the TOST used the TOST option, and the 2-tailed t test did not use
this option. We used population summary statistics (MEAN = ad-
justed population prevalence estimate, N = sample size, STD = ad-
justed standard deviation) computed in SUDAAN. The signific-
ance level was set at an α of .05.
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For TOST, we hypothesized that a ±5 percentage-point margin
would fit best for most health indicators on the basis of a previous
study comparing vaccine coverage among various races in a na-
tional survey (22) and consultation with another jurisdiction using
TOST to evaluate EHRs for surveillance (P. Joseph Gibson, Mari-
on County Public Health Department, written and oral communic-
ations, 2016). We also tested a lower margin of ±2.5 percentage
points and a higher margin of ±7.5 percentage points to assess
whether margin size would vary according to prevalence mag-
nitude.  To determine the optimal equivalence margin for each
health indicator, we compared TOST findings for each margin
with 3 a priori goodness-of-fit criteria: a prevalence ratio of 0.85
to  1.15,  an  absolute  difference  in  prevalence  of  5  percentage
points or less, and t test P ≥ .05.

Results
In the comparison of CHS and NYC HANES prevalence estim-
ates, 6 health indicators met all 3 goodness-of-fit criteria: influ-
enza vaccination (CHS, 47.3%; NYC HANES, 47.6%), hyperlip-
idemia (CHS, 47.9%; NYC HANES, 46.9%), hypertension (CHS,
31.6%; NYC HANES, 32.5%), depression (CHS, 16.4%; NYC
HANES, 15.2%), diabetes (CHS, 12.5%; NYC HANES, 12.6%),
and serious psychological distress (CHS, 5.2%; NYC HANES,
4.8%) (Table). When we used TOST with a ±5 percentage-point
margin, prevalence estimates from both surveys were statistically
equivalent for influenza vaccination, hypertension, depression,
diabetes, and serious psychological distress (P for all < .05), but
not  hyperlipidemia  (P  =  .05).  Smoking  (CHS,  14.9%;  NYC
HANES, 17.7%) and extreme obesity (CHS, 3.5%; NYC HANES,
5.1%) met 2 of the 3 goodness-of-fit criteria. When we used TOST
with a ±5 percentage-point  margin,  prevalence estimates from
both surveys were not statistically equivalent for smoking (P =
.09), but they were statistically equivalent for extreme obesity (P <
.001). Overweight or obesity (CHS, 57.3%; NYC HANES, 65.9%)
met only one of the 3 goodness-of-fit criteria, and when we used
TOST with a ±5 percentage-point margin prevalence estimates
from both surveys were not equivalent (P = .98). Obesity met none
of  the 3  goodness-of-fit  criteria,  and the prevalence estimates
(CHS, 24.7%; NYC HANES, 31.3%) were not statistically equi-
valent when we used a ±5 percentage-point margin in TOST (P =
.82).

When we used a margin of ±2.5 percentage points, the prevalence
estimates for diabetes (CHS, 12.5%; NYC HANES, 12.6%; P =
.02)  and  serious  psychological  distress  (CHS,  5.2%;  NYC
HANES, 4.8%; P = .009) were statistically equivalent (Figure)

(Table). When we tested a margin of ±7.5 percentage points, the
prevalence estimates for smoking (CHS, 14.9%; NYC HANES,
17.7%; P = .002) and hyperlipidemia (47.9% vs. NYC HANES,
46.9%; P = .004) were statistically equivalent. Only the preval-
ence estimates for overweight/obesity and obesity were not statist-
ically equivalent at ±7.5 percentage points.

Figure. Prevalence estimates with 90% confidence intervals computed by
using 3 TOST margins: ±2.5 percentage points (short dashed lines),  ±5.0
percentage points (long dashed lines), and ±7.5 percentage points (medium-
dashed lines). Health indicators are ordered in magnitude of prevalence in
NYC HANES. Abbreviations: CHS, Community Health Survey; NYC HANES, New
York City Health and Nutrition Examination Survey; TOST, two one-sided t test.

 

Discussion
In this analysis comparing prevalence estimates for health indicat-
ors between the in-care populations of 2013–14 NYC HANES and
2013 CHS, using TOST with a ±5 percentage-point margin was
most appropriate for health indicators that had prevalence estim-
ates ranging from 10% to almost 50% (eg, influenza vaccination).
Among the various methods used in this study, only TOST al-
lowed us to establish equivalence. TOST could play an important
role in validating EHR data because it not only allows the assess-
ment of equivalence but it also avoids the potential pitfalls of the t
test. Prevalence ratio and absolute percentage-point difference in
prevalence have additional shortcomings. Prevalence ratio is sens-
itive to the magnitude of the prevalence estimates and therefore

PREVENTING CHRONIC DISEASE VOLUME 14, E44

PUBLIC HEALTH RESEARCH, PRACTICE, AND POLICY           JUNE 2017

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,

the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.

www.cdc.gov/pcd/issues/2017/16_0516.htm • Centers for Disease Control and Prevention       3



cannot be reliably used to assess equivalence or difference across a
wide range of estimates. Absolute percentage-point difference in
prevalence, in contrast to prevalence ratio, is insensitive to the
magnitude of prevalence estimates and could give a wrong sense
of equivalence or difference.

We observed a better fit into the ±2.5 percentage-point margin as
prevalence magnitude and standard errors decreased. Consistent
with this pattern, a ±2.5 percentage-point margin for TOST ap-
peared to be most appropriate for health indicators that had a pre-
valence estimate of less than 10%. For serious psychological dis-
tress, a ±2.5 percentage-point margin seemed most appropriate be-
cause the TOST result was significant and consistent with the oth-
er goodness-of-fit criteria, indicating that prevalence estimates
were similar. Extreme obesity also had a low prevalence in both
surveys, and the low prevalence ratio of 0.68 and P value of .05
indicated that the prevalence estimates were different. The preval-
ence estimates were statistically equivalent at the ±5 percentage-
point margin but not at the 2.5 percentage-point margin. There-
fore, it seems that a ±2.5 percentage-point margin would be most
consistent with other criteria showing that the prevalence estim-
ates were indeed not similar.

We have 3 recommendations for using TOST to assess the equi-
valence of prevalence estimates. First, we recommend that TOST
margins be selected according to the public health importance of
the difference in prevalence estimates, in line with drug regulat-
ory agencies’ recommendation that margin selection should be
guided by clinical relevance (12,13). For example, a ±5 percent-
age-point margin could be used for obesity because the estimates
were clearly different and TOST using this margin demonstrated
lack of equivalence. Self-reported height and weight, as recorded
in CHS, is considered an acceptable way to measure obesity for
public health surveillance, although we should expect to see differ-
ences when we compare data on self-reported height and weight in
CHS with data on measured height and weight in NYC HANES.
Second, we recommend that the size of the standard error of the
difference in prevalence estimates be used to guide margin selec-
tion (ie, a small standard error calls for a smaller margin, and a
large standard error calls for a larger margin). Because the size of
the standard error depends on the sample size of the data sources
and the prevalence of the health indicator, smaller margins may be
needed when comparing surveys with large sample sizes and when
prevalence estimates are small. Third, the type of data being com-
pared should also inform margin selection. In public health sur-
veillance, we usually are interested in estimates of prevalence and
incidence (ie, proportions), but sometimes we are interested in
comparing means. An important issue in comparing means is that
a ±5 percentage-point margin has different clinical meanings for
health indicators measured on different scales, such as BMI and

hemoglobin A1c. Using standardized effect size of a relative per-
centage-point difference in estimates as a proxy for acceptable
magnitude of difference might be useful for comparing means
(23).

A strength of this study was the ability to compare the prevalence
estimates for the same health indicators in 2 representative sur-
veys from the same geographic area during the same time period.
One limitation is the greater degree of imprecision (ie, wider con-
fidence intervals) for some health indicators (eg, hyperlipidemia)
compared with others (eg, hypertension). Although the greater de-
gree of imprecision complicated margin selection when we ex-
amined individual health indicators, our choice of an optimal mar-
gin of ±5 percentage points was ultimately based on what was best
for most indicators.

Equivalence testing may be a useful method for assessing similar-
ity between EHR-based prevalence estimates and survey-based
prevalence estimates. The NYC DOHMH, in collaboration with
the CUNY School of Public Health, developed the NYC Macro-
scope, a primary care EHR-based surveillance system aimed at
monitoring chronic conditions and risk factors (24). The ±5 per-
centage-point equivalence margin used in this study was used for
NYC Macroscope validation studies (7–9) and could help guide
future work in other jurisdictions. Although the use of a ±5 per-
centage-point margin was appropriate for most estimates, future
research is needed to further define best practices for margin selec-
tion when validating EHR data.
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Table

Table. Prevalence Estimates, Measures of Difference, and Measures of Equivalence for Health Indicators in the In-Care Populations in the 2013 CHS and
2013–2014 NYC HANES, Ordered by Magnitude of Prevalence of Health Indicators

Health Indicator

% (95% CI)
Prevalence
Ratio (CHS/
NYC HANES)

Absolute Difference in
Prevalence Between CHS

and NYC HANES,
Percentage Point (95% CI)c

P Value

t Test for
Differenced

TOST for Equivalence, by
Percentage-Point Margine

CHS (N = 6,166)a
NYC HANES
(N = 1,135)b ±5 ±2.5 ±7.5

Overweight or obesityf 57.3 (55.5 to 59.1) 65.9 (62.8 to 68.8) 0.87 −8.6 (−12.0 to −5.1) <.001 .98 >.99 .73

Influenza vaccinationg 47.3 (45.5 to 49.0) 47.6 (44.0 to 51.2) 0.99 −0.4 (−4.4 to 3.7) .86 .01 .15 <.001

Hyperlipidemiah 47.9 (45.7 to 50.1) 46.9 (42.6 to 51.3) 1.02 0.9 (−4.0 to 5.8) .71 .05 .26 .004

Hypertensionh 31.6 (30.2 to 33.0) 32.5 (29.4 to 35.7) 0.97 −0.9 (−4.3 to 2.5) .60 .01 .18 <.001

Obesityf 24.7 (23.2 to 26.3) 31.3 (28.5 to 34.2) 0.79 −6.5 (−9.8 to −3.3) <.001 .82 .99 .28

Smokingi 14.9 (13.6 to 16.3) 17.7 (15.1 to 20.8) 0.84 −2.8 (−6.0 to 0.3) .08 .09 .58 .002

Depressionh 16.4 (15.1 to 17.9) 15.2 (13.0 to 17.7) 1.08 1.2 (−1.5 to 3.9) .38 .003 .18 <.001

Diabetesh 12.5 (11.5 to 13.5) 12.6 (10.6 to 14.8) 0.99 −0.1 (−2.4 to 2.2) .93 <.001 .02 <.001

Extreme obesityf 3.5 (2.9 to 4.2) 5.1 (3.8 to 6.8) 0.68 −1.6 (−3.2 to −0.02) .05 <.001 .14 <.001

Serious psychological
distressj

5.2 (4.5 to 6.1) 4.8 (3.5 to 6.5) 1.10 0.5 (−1.2 to 2.1) .56 <.001 .009 <.001

Abbreviations: CHS, Community Health Survey; CI, confidence interval; NYC HANES, New York City Health and Nutrition Examination Survey; TOST, two one-sided t
test.
a Weighted sample size is 4,137,212.
b Weighted sample size is 4,695,368.
c Value for CHS minus value for NYC HANES. Differences may vary by ±0.1 because of rounding.
d P value <.05 indicates that CHS and NYC HANES estimates were statistically different.
e P value <.05 indicates CHS and NYC HANES estimates were statistically equivalent.
f Body mass index (BMI) was classified into 3 categories: overweight or obesity (BMI ≥25), obesity (BMI ≥30), and extreme obesity (BMI ≥40). BMI was calculated as
weight in kilograms divided by height in meters squared; height and weight were self-reported in CHS and measured during the interview in NYC HANES.
g Influenza vaccination was defined as reporting to have received an influenza vaccine in the previous 12 months.
h Depression, hypertension, diabetes, and hyperlipidemia were defined as an affirmative response to 4 questions asking respondents whether they had ever been
told a by health care professional they had these conditions. The question on hyperlipidemia was restricted to men aged 40 years or older and women aged 45
years or older to be consistent with routine cholesterol testing recommendations of the US Preventive Services Task Force (17).
i Smoking was defined as having smoked at least 100 cigarettes in one’s lifetime and having recently smoked every day or some days at the time of the survey.
j Serious psychological distress was defined as a Kessler 6 score of at least 13 (of a possible 24) (18).
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